Robotics & Autonomous Systems
An Interdisciplinary Graduate Program

Master of Science (M.S.)
Graduate Student Handbook
2018 – 2019 Academic Year

https://ras.engineering.asu.edu/
Contents

1. Program Overview .. 3
2. Program Admissions Information .. 5
3. Program Requirements .. 6
4. Student Code of Conduct and Academic Integrity .. 11
5. Program and University Procedures and Policies ... 11
7. Conduct and Conflict Resolution ... 17
8. Program and University Resources ... 18
9. Archived Editions of This Handbook ... 18
1. Program Overview

Robotics and autonomous systems are interdisciplinary technologies that impact manufacturing, transportation, aerospace, defense, healthcare, etc. The ASU Robotics Faculty Group includes faculty from several engineering disciplines, and a large number of graduate robotics-related engineering courses are already being offered at both the Tempe and Poly campuses. Autonomous systems and robotics are related, and extend the field of “traditional” robotics to emerging fields such as collective behavior, autonomous vehicles, advanced sensing technologies, etc. This interdisciplinary MS degree brings together students from various engineering backgrounds and allows them to take advantage of the broad variety of available courses and faculty.

The Master of Science (M.S.) in Robotics and Autonomous Systems has four concentrations, and applicants are required to select one concentration at the time of application.

Mechanical & Aerospace Engineering

This concentration is offered by the School of Engineering of Matter, Transport and Energy at the Tempe campus. It is appropriate for students who wish to emphasize applications in mechanical or aerospace engineering and provides students with the necessary background and skills for a broad range of applications of robotics and autonomous systems. Students will get a solid theoretical and practical background in a variety of topics that include theory, design and implementation of control systems, kinematics and dynamics of rigid and non-rigid (flexible, soft) robotic systems, design and bio-inspiration in controller design and hardware, swarm robotics, as well as embedded systems programming. Most importantly, students in this concentration will be exposed to state-of-the-art and emerging theories and implementations related to human-robot interaction, robotics and automation in healthcare, manufacturing, automotive controls, as well as a plethora of everyday life applications of robotics and autonomous systems. This concentration prepares engineers for doctoral study or industrial positions that specialize in research, project management and product innovation related to robotics and autonomous systems. Modern robotics and autonomous systems laboratory facilities are available to support research investigations. Portfolio (non-thesis), supervised project, and thesis options are available. Students are required to take two core courses (MAE 501, MAE 547), two courses from the concentrations (MAE 506 + 1), and up to six electives, with at least two electives selected from outside the concentration.

Systems Engineering

This concentration is offered by The Polytechnic School at the Polytechnic campus, in Mesa, AZ. It is appropriate for students who wish to emphasize applications in systems engineering. The systems concentration will prepare students to identify, model, analyze, interpret, optimize and manage the multidimensional interactions of the ever-increasing complexity of modern mechatronic and robotic problems. Subject areas include mechatronics, controls, foldable robotics, soft robotics, medical robotics, design, additive manufacturing, and industrial automation. Engineering students that complete the systems concentration will be well prepared for doctoral study or industrial positions related to robotics and autonomous systems as they will possess the necessary expertise to advance systems integration of key industry and government sectors, and to contribute to the body of knowledge on interdisciplinary methods, techniques and strategies for designing and managing complex robotic systems.
Portfolio (non-thesis), applied project, and thesis options are available. Students are required to take two core courses (MAE 501, MAE 547), two courses from the concentrations (EGR 550 + 1), and up to six electives, with at least two electives selected from outside the concentration.

Phone: (480) 727-1874
Email: polygrad@asu.edu
6049 S. Backus Mall
Mesa, AZ 85212

Electrical Engineering
This concentration is offered by the School of Electrical, Computer and Energy Engineering at the Tempe campus. It is appropriate for students who wish to emphasize applications in electrical engineering. Students will get a solid theoretical and practical background in a variety of topics that include theory, design and implementation of control systems, signal processing, real-time and embedded systems, computer vision, and machine learning. Students in this concentration will be exposed to state-of-the-art and emerging theories and implementations related to sensing, data processing, adaptive control, automated mobility, autonomous systems, human-machine interaction, robotic applications in various domains including but not limited to public safety, manufacturing, healthcare, automotive, and assistive technologies. This concentration prepares engineers for doctoral study or industrial positions that specialize in research, project management and product innovation related to robotics and autonomous systems. Modern robotics and autonomous systems laboratory facilities are available to support research investigations. Comprehensive exam (non-thesis) and thesis options are available. Students are required to take two core courses and up to six electives, with at least two electives selected from outside the concentration. Students are required to take two core courses (MAE 501, MAE 547), two courses from the concentration (EEE 591 Feedback Systems, EEE 591 Real-Time DSP Systems), and up to six electives, with at least two electives selected from outside the concentration.

Phone: (480) 965-3424
Email: askee@asu.edu
PO Box 875706
Tempe, AZ 85287-5706

Artificial Intelligence
This concentration is offered by the School of Computing, Informatics, and Decision Systems Engineering at the Tempe campus. It is appropriate for students who wish to emphasize applications in artificial intelligence/computer science. Students will get a solid theoretical and practical background in a variety of topics that facilitate the study of "intelligent agents", that is any robotic system that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Thus, students in this concentration will be exposed to the frontiers of the general topics in AI, including statistical machine learning, computer vision, natural language processing, knowledge retrieval and reasoning, and formal methods of planning. When compared to the other concentrations, the AI concentration focuses more on the algorithmic aspects of robotics. This concentration prepares engineers for doctoral study or industrial positions that specialize in research, development, project management and product innovation related to autonomous intelligent systems. Modern robotics and autonomous systems laboratory facilities and state-of-the-art computing resources are available to support research investigations. Portfolio (non-thesis), and thesis options are available. Students are required to take two core courses (MAE 501, MAE 547), four courses from the concentration (CSE 571 + 3), and up to four electives, with at least two electives selected from outside the concentration.

Phone: (480) 965-3199
Email: cidse.advising@asu.edu
PO Box 878809
Tempe, AZ 85287-8809
Administration
- The Graduate Program Chair (GPC) will be determined by the program faculty. The Graduate Program Chair is currently Dr. Panagiotis Artemiadis.
- A Graduate Program Committee will be composed of two representatives from each concentration, plus the GPC (nonvoting except to break a tie).

2. Program Admissions Information
An applicant must fulfill the requirements of both the ASU Graduate College and the Ira A. Fulton Schools of Engineering.

Eligibility
An applicant must have a minimum of a bachelor's degree (or equivalent) or master's degree from a regionally accredited college or university in a related field such as engineering, physics, or mathematics. A minimum of a 3.0 cumulative GPA (scale is 4.0 = “A”) in the last 60 hours of a student’s first bachelor’s degree program is required.

Application Deadlines
Students can apply for and be admitted in either the spring or fall semesters. The priority deadline for fall semester admission is December 31, and the priority deadline for spring semester admission is August 15. To receive full consideration, submit all required documents by the deadline. International students must apply by April 15 for the fall semester and October 1 for the spring semester to ensure visa documents may be processed on-time.

Application Requirements
Applicants are required to submit:
- Graduate admission application at https://webapp4.asu.edu/dgsadmissions/Index.jsp and pay the application fee
- Official transcripts
- Letter of intent/written statement
- Professional resumé or curriculum vitae
- GRE scores
 - The program does not require specific subject GRE scores. The ASU institution code is 4007, and there is no department code (use 0000 if required).
- Proof of English proficiency
 - The University requires all international applicants from a country whose native language is not English to provide the Test of English as a Foreign Language (TOEFL), the International English Language Testing System (IETLS), or the Pearson scores.
 - This program requires a minimum score of 575 (paper-based) or 90 (internet-based) TOEFL, 7 IETLS, or 65 Pearson as expectations for admission.
 - Applications are not processed until the university receives official scores, which are valid two years from the start date of the degree program.
 - Please address all TOEFL questions to Graduate Admissions. The ASU institution code is 4007. If department code is required use 0000.
 - If a student has completed coursework in the US, they can contact Graduate Admission to see if they qualify for a waiver.
Recommended Academic Preparation
Robotics and Autonomous Systems graduate students should have knowledge in the following topics prior to applying for the program at Arizona State University:

- MAT 267: Calculus for Engineers III
- MAT 242: Elementary Linear Algebra
- PHY 121: University Physics I: Mechanics
- MAE 318 System Dynamics and Control I
 Prerequisite(s) with C or better: EEE 202; MAE 202 or 212; MAE 384; MAT 267 or 272; PHY 131; PHY 132; Aerospace or Mechanical Engineering BSE major; Pre- or corequisite(s): MAE 301 with C or better if completed
- MAE 417 System Dynamics and Control II
 Prerequisites are Mechanical Engineering BSE or Aerospace Engineering BSE major; MAE 318 with C or better

Transferring Between Concentrations or Programs
Students who want to change between concentrations or change to another degree program must submit a new application with Graduate Admission. If admitted, the Graduate College’s pre-admission policy states that a student is allowed to use only twelve credits with grades of “B” or better from the original program to the new program. However, petitions to the pre-admission policy will be considered on a case-by-case basis.

3. Program Requirements
A minimum of 30 credit hours of coursework beyond the bachelor’s degree and deficiency courses are required to complete the MS degree. All master's students are required to develop and submit an Interactive Plan of Study (iPOS) through your MyASU page during the first semester at ASU. The iPOS should be developed with the aid of the student's faculty advisor. The graduate academic advisor, acting on behalf of the graduate program chair, will initially advise the student. Students pursuing the non-thesis option will list the program chair as their faculty advisor. Students pursuing the thesis option should seek out a faculty member in his or her area of study to serve as advisor and committee chair.

Total Number of Credit Hours: 30
Core: 6
Concentration: 6 (except Artificial Intelligence which requires 12)
Electives: 12 to 18 (6 to 12 for Artificial Intelligence)
Thesis (6) or Supervised/Applied Project (3) or Portfolio (0) or Comprehensive Exam (0)

Core (6 credit hours)
MAE 501 Linear Algebra in Engineering
MAE 547 Modeling and Control of Robots (MAE 501 is a pre/corequisite)

Concentrations
All students must select one of the following four concentrations at the time of application:

Mechanical & Aerospace Engineering Concentration (6 credit hours)
MAE 506 Advanced System Modeling, Dynamics, and Control
Plus one class from the following list:
 MAE 508 Digital Control: Design and Implementation
 MAE 598 Multi-Robot Systems
MAE 598 Bio-Inspired Robots
MAE 598 LMI Methods in Optimal and Robust Control

Systems Engineering Concentration (6 credit hours)
EGR 550 Mechatronic Systems
Plus one class from the following list:
 - EGR 598 Foldable Robots
 - EGR 598 Mechatronics Device Innovation
 - EGR 598 System Control and Optimization
 - HSE 424/PSY 560 Human Automation Interaction

Electrical Engineering Concentration (6 credit hours)
EEE 582 Linear System Theory (required)
EEE 588 Design of Multivariable Control Systems (required)
EEE 598 Deep Learning for Media Processing and Understanding
EEE 508 Digital Image and Video Processing and Compression
EEE 586 Nonlinear Control Systems
EEE 591 Feedback Systems
EEE 591 Real-Time DSP Systems
EEE 598 Introduction to Electric and Autonomous Vehicles

Artificial Intelligence Concentration (12 credit hours)
CSE 571 Artificial Intelligence
Plus three classes from the following list:
 - IEE 598 Optimal Foraging Theory: From Biology to Engineering
 - CSE 522 Real-Time Embedded Systems
 - CSE 551 Foundations of Algorithms
 - CSE 574 Planning and Learning Methods in AI
 - CSE 575 Statistical Machine Learning
 - CSE 576 Topics in Natural Language Processing
 - CSE 591 Advances in Robot Learning
 - CSE 591 Perception in Robotics
 - CSE 591 Human-Aware Robotics

Electives (6 to 18 credit hours)
At least two courses (6 credit hours) must be chosen from outside the student’s concentration area among the courses listed above. The electives must be graduate courses in science, engineering, mathematics, or others approved by the Graduate Program Committee.

Culminating Events (0 to 6 credit hours)
Students are free to choose from among the following culminating experiences:
- Thesis (requires 6 credit hours of MAE 599, EGR 599, EEE 599, or CSE 599)
 - Typical written thesis and defense
- Supervised/Applied Project (requires 3 credit hours of MAE 598 or EGR 593)
 - Typical project report & poster presentation
 - Note: The Supervised Project option is only available in the mechanical & aerospace engineering and systems engineering concentrations.
- Portfolio (no course credit hours)
 - Poster presentation with content from courses taken in the program
For Artificial Intelligence Concentration: The portfolio is a compilation of three projects that are finished in the required concentration courses; students must write a portfolio report that includes the highlights of the three projects.

For Mechanical & Aerospace Concentration: The portfolio is a compilation of two projects that are finished in the required concentration courses.

Note: This is the default option for students in the mechanical & aerospace engineering, systems engineering, and artificial intelligence concentrations.

- Comprehensive Exam (no course credit hours)
 - Note: This is the default option for students in the electrical engineering concentration, and is not available in the other concentrations.

Thesis
The thesis option is the research master's degree. A member of the corresponding Graduate Faculty (with co-chair or chair status as specified on the web site) must agree to serve as the program committee chair (faculty advisor) for a student to be transferred to the MS—thesis degree program. The Graduate Academic Advising Office will need to have confirmation in writing (email is acceptable) from the faculty member agreeing to serve as the thesis chair prior to a plan change being made to move to the MS—thesis degree. The program committee chair, in consultation with the student, will establish a Program Committee. It shall be composed of a minimum of three members from the ASU faculty with at least two being from the RAS Faculty. If the committee chair has co-chair status on the graduate faculty, the program committee must include a RAS faculty member with chair or co-chair status serving as second co-chair. Participation of individuals from institutions external to ASU is encouraged but must be approved by the Graduate Program Chair and the Graduate College.

Timeline
1. Identify a thesis advisor from the RAS Graduate Faculty. This should be done as soon as possible, but no later than the second semester of study.
2. File Plan of Study – prior to beginning of second semester of study (Spring or Fall only, not counting the summer).
3. Apply for graduation – please see the Academic Calendar for deadlines at: http://students.asu.edu/academic-calendar
4. Complete the Graduate Advising - Academic Event Request Form 15 working days prior to the defense to reserve a room.
5. Schedule the defense with the Graduate College through the MyASU portal a minimum of ten business days (not including holidays) before defense date (consult 10-day calendar).
6. Submit thesis for format approval – please see the Graduate College deadlines and procedures for additional information: http://graduate.asu.edu/graddeadlines.html
7. Submit thesis title, date/time/location of defense, and abstract to the Graduate Academic Advising Office for internal posting.
8. Hold oral defense of thesis – must be completed by the last day to defend a thesis date as defined in http://graduate.asu.edu/graddeadlines.html
9. Submit pass/fail form via DocuSign to the Graduate College
10. Submit thesis to ProQuest electronically when directed by the Graduate College.
11. Email the Graduate Advising Office a copy of your Proquest submission receipt in order for any outstanding “Z” grades to be changed to “Y”.

Commencement date – See academic calendar

Supervised Project
The supervised project is carried out under the supervision of a faculty member, typically a member of the MAE graduate faculty https://graduate.asu.edu/graduate_faculty although other ASU faculty members may be selected upon approval by the Graduate Program Chair. Students desiring to conduct a supervised project must first obtain the approval of a faculty member to work with them on the project. They must then request the approval of the Graduate Program Chair. At completion of the supervised project, the students must prepare a written report delivered to the faculty advisor of the project and deliver a short oral presentation to him/her. Credit is earned when the faculty advisor approves the written report and oral presentation. For students carrying out a supervised project, the faculty chair is the faculty advisor for the project. The supervised project committee consists only of the faculty chair.

Portfolio
The Portfolio is a sample of the significant projects that a graduate student has carried out during his/her graduate studies showcasing the quality of the graduate education he/she has received. Students choosing the MS portfolio option must select two significant projects from previously completed graduate MAE or Math coursework listed on their approved iPOS. The portfolio is then the concentration of the reports (presentation slides are acceptable if no report was submitted for that project) submitted to the instructors of the two selected graduate classes. A cover page needs to be included describing what courses the projects were carried out in, and why they were selected for inclusion in the Portfolio by the student. The Graduate Program Chair will be solely responsible for judging the quality of the portfolio and determining if it is satisfactory to serve as the required culminating event for the MS—non-thesis degree. For students selecting the portfolio option, the committee consists only of the Graduate Program Chair serving as faculty chair.

Timeline
i. File Plan of Study – prior to beginning of second semester of study (Spring or Fall only, not counting summer).
ii. Select “portfolio” for both the portfolio and supervised project options described above. If following the supervised project option, the student must first identify a faculty member to supervise the project, see above.
iii. Apply for graduation – please see the Academic Calendar for deadlines at: http://students.asu.edu/academic-calendar
iv. For students carrying out a supervised project, they must complete the Academic Event Request Form 15 working days prior to the expected project presentation date
v. Before the start of final exams on the last semester, present the results of the supervised project to the faculty advisor or submit the portfolio to the Graduate Program Chair, depending on the non-thesis option selected.
vi. Commencement date – See academic calendar

Last Update November 14, 2018
Example Programs of Study

C: Core, Con: Concentration, E: Elective, Cul: Culminating Experience

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Year 1 Fall</th>
<th>Year 1 Spring</th>
<th>Year 2 Fall</th>
<th>Year 2 Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical & Aerospace Engineering</td>
<td>• MAE 501 Linear Algebra in Engineering (C, 3, Fa, Sp, Su)</td>
<td>• MAE 508 Digital Control: Design and Implementation (Con, 3, Sp)</td>
<td>• MAE 506 Advanced System Modeling, Dynamics, and Control (Con, 3, Fa)</td>
<td>• MAE 598 Bio-Inspired Robots (E, 3, Sp)</td>
</tr>
<tr>
<td></td>
<td>• MAE 547 Modeling & Control of Robots (C, 3, Fa, Sp)</td>
<td>• EGR 598 Mechatronics Device Innovation (E, 3, Sp)</td>
<td>• MAE 598 Multi-Robot Systems (Con, 3, Fa)</td>
<td>• Portfolio (Cul)</td>
</tr>
<tr>
<td></td>
<td>• EEE 582 Linear System Theory (E, 3, Fa)</td>
<td>• CSE 522 Real-Time Embedded Systems (E, 3, Sp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>• MAE 501 Linear Algebra in Engineering (C, 3, Fa, Sp, Su)</td>
<td>• EGR 598 Mechatronics Device Innovation (Con, 3, Sp)</td>
<td>• EGR 598 System Control and Optimization (Con, 3, Fa)</td>
<td>• MAE 598 Bio-Inspired Robots (E, 3, Sp)</td>
</tr>
<tr>
<td></td>
<td>• MAE 547 Modeling & Control of Robots (C, 3, Fa, Sp)</td>
<td>• EEE 586 Nonlinear Control Systems (E, 3, Sp)</td>
<td>• EGR 520 Engineering Analysis (Con, 3, Fa)</td>
<td>• Portfolio (Cul)</td>
</tr>
<tr>
<td></td>
<td>• EGR 550 Mechatronic Systems (Con, 3, Fa)</td>
<td>• EGR 598 Foldable Robots (Con, 3, Sp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>• MAE 501 Linear Algebra in Engineering (C, 3, Fa, Sp, Su)</td>
<td>• EEE 591 Real-Time DSP (Con, 4, Sp)</td>
<td>• EEE 582 Linear System Theory (Con, 3, Fa)</td>
<td>• Comprehensive Exam (Cul)</td>
</tr>
<tr>
<td></td>
<td>• MAE 547 Modeling & Control of Robots (C, 3, Fa, Sp)</td>
<td>• CSE 575 Statistical Machine Learning (E, 3, Sp)</td>
<td>• EEE 508 Digital Image & Video Proc & Cmp (E, 4, Fa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EEE 591 Feedback Systems (Con, 4, Fa, Sp)</td>
<td>• MAE 598 Bio-Inspired Robots (E, 3, Sp)</td>
<td>• MAE 598 Multi-Robot Systems (E, 3, Fa)</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>• MAE 501 Linear Algebra in Engineering (C, 3, Fa, Sp, Su)</td>
<td>• CSE 591 Advances in Robot Learning (Con, 3, Sp)</td>
<td>• MAE 598 Multi-Robot Systems (E, 3, Fa)</td>
<td>• MAE 598 Bio-Inspired Robots (E, 3, Sp)</td>
</tr>
<tr>
<td></td>
<td>• MAE 547 Modeling & Control of Robots (C, 3, Fa, Sp)</td>
<td>• CSE 522 Real-Time Embedded Systems (Con, 3, Sp)</td>
<td>• CSE 551 Foundations of Algorithms (Con, 3, Fa)</td>
<td>• Portfolio (Cul)</td>
</tr>
<tr>
<td></td>
<td>• CSE 571 Artificial Intelligence (Con, 3, Fa, Sp)</td>
<td>• CSE 575 Statistical Machine Learning (E, 3, Sp)</td>
<td>• EEE 582 Linear System Theory (E, 3, Fa)</td>
<td></td>
</tr>
</tbody>
</table>
Concurrent Degrees
A student may pursue concurrent master’s degrees with prior written approval from the head of the academic unit for each degree program and the Graduate College office. A separate online application is required for each degree program. A maximum of 20 percent of the minimum total semester hours for the completion of both degrees may be common hours shared between the Plans of Study. The total number of hours common to both degree programs may vary from this maximum value only when the Graduate College has formally approved coordinated degree programs.

Coursework common to both programs must constitute a well-planned and meaningful part of each of the programs and may only include coursework completed after admission to both degree programs. In all cases, the guidelines below must be followed:

1. The student must maintain continuous enrollment as previously defined. Registration in both programs may be required each semester, please see the academic unit for specific satisfactory academic progress and program rules. Requests to maintain continuous enrollment forms will apply to both programs; students may not be registered for coursework in either program if approved.
2. Graduate credit transferred from another institution may be applied toward only one-degree program.
3. Culminating experiences (e.g. capstone courses, theses, applied projects) and comprehensive examinations cannot be shared between concurrent degree programs.
4. The six-year maximum time limit for completing degree requirements and graduation apply to each concurrent degree individually.

Refer to http://graduate.asu.edu/policies-procedures for the most recent Graduate College policies.

Pursuing a two concurrent RAS degrees is not allowed in any of the concentrations.

4. Student Code of Conduct and Academic Integrity
The highest standards of academic integrity are expected of all graduate students, both in the academic coursework and in their related research activities. The failure of any graduate student to meet these standards may result in serious consequences including suspension or expulsion from the university and/or other sanctions as specified in the academic integrity policies of individual colleges as well as the university.

Violations of academic integrity include, but are not limited to: cheating, fabrication, tampering, plagiarism, or aiding and/or facilitating such activities. At the graduate level, it is expected that students are familiar with these issues and each student must take personal responsibility in their work. In addition, graduate students are expected to follow university guidelines related to the Student Code of Conduct. University policies related to academic integrity and code of conduct are available in the Office of Student Life at https://provost.asu.edu/academic-integrity/policy.

5. Program and University Procedures and Policies

Satisfactory Progress, Academic Probation, Progress Probation, and Removal from the Program
Each semester, the program reviews students’ files for satisfactory progress towards completion of the degree. All students are placed in one of the four categories:
Satisfactory Progress
Satisfactory progress means that the student does not have any academic and progress probationary issues. In addition to the probationary rules, satisfactory progress includes communication each semester with the student’s faculty advisor regarding his or her progress.

Academic Probation
Academic probation pertains to grades that might affect program and university policies including graduation. The following are notices/letters you will receive if one of these pertains to your academics:
- GPA below 3.0 in approved iPOS courses
- Overall post baccalaureate (cumulative) GPA below 3.0
- Overall graduate (500 level or above) GPA below 3.0

Progress Probation
Progress probation pertains to issues dealing with making progress towards a degree. The following are notices/letters you will receive if one of these pertains to your academics:
- Failure to complete core courses within the first year of study
- Failure to pass the Comprehensive Examination
- Failure to make satisfactory progress towards completing thesis, this includes maintain regular contact with your thesis committee chair.

Removal from the Program
A student is recommended for removal from the program if he/she fails to meet the probationary standards placed upon him/her in the semester mentioned in the probationary letter. The student will receive a letter from the program explaining the reasons for the removal. The student will have 5 calendar days from the date of the letter to appeal the decision. The Graduate Programs Committee (GPC) will review the case and will make the necessary recommendation. The Graduate Program Chair, on behalf of the GPC, will provide a written explanation of the outcome. If the outcome is favorable, the student will have to meet all the outlined requirements at the end of the specified period. The student will be required to sign an agreement acknowledging the recommendations and the consequences if the requirements are not met. If the GPC recommends that the appeal is not granted in favor of the student, the Graduate Program Chair, on behalf of the GPC, will recommend to the Vice Dean of Academic Affairs to remove the student from the program. The Ira A. Fulton Schools Standards Committee reviews the student’s case and makes the final ruling to the Associate Dean of Graduate College and the program. If the appeal is not granted in favor of the student, the Vice Dean of Academic and Student Affairs will recommend to Graduate College to remove the student from the program. Graduate College makes the final decision to dismiss the student from the program. Please refer to the Graduate College website for policies and procedures or contact the graduate advisor in your respective concentration advising center.

Continuous Enrollment and Leave of Absence Policies
Once admitted to a graduate degree program, graduate students must be registered for a minimum of one credit hour of graduate level coursework (not audit) during all phases of their graduate education. This includes periods when they are engaged in research, working on or defending thesis, taking comprehensive exams, or in any other way using university facilities or faculty time including the term in which they graduate. This credit must appear on the iPOS or must be an appropriate graduate-level course. Courses with grades of “W” and “X” and Incomplete (changes to permanent incomplete grade after one year) are not considered valid registration for continuous enrollment purposes.
Students planning to discontinue enrollment for a semester or more must request approval for a leave of absence. Students may petition Graduate College for a leave of absence for a maximum of two semesters during their entire program. A petition for a leave of absence must be endorsed by the Graduate Program Chair, the committee chair for a thesis students, and must be approved by Graduate College. This request must be filed and approved before the anticipated absence.

An approved leave of absence will enable students to re-enter their program without re-applying to the university. Students who do not enroll for a fall or spring semester without an approved leave of absence by Graduate College are considered withdrawn from the university under the assumption that they have decided to discontinue their program. A student removed for this reason may reapply for admission to resume his/her degree program; the application will be considered along with all other new applications to the degree program. Any previously earned credits are subject to Graduate College’s preadmission credit policy and it is not guaranteed that you will be able to use them towards your new admission.

A student on leave is not required to pay fees, but in turn is not permitted to place any demands on university faculty or use any university resources.

Maximum Time Limit

All work toward a MS degree must be completed within six consecutive years. The six years begin with the semester and year of admission to the program. Graduate courses taken prior to admission that are included on the iPOS must have been completed within three years of the semester and year of admission to the program.

Curricular Practical Training

Curricular Practical Training (CPT) is an academic experience usually obtained at off-campus work settings, allowing the student to apply knowledge and skills gained in various classes. It is intended as a unique, hands-on learning experience to provide students with a number of valuable skills that they can use upon graduation from their graduate degree programs. Accordingly, it is not available to full-time or part-time workers regularly employed by the company where the internship is proposed.

The CPT is available to both domestic and international students. However, international students must work with the International Students and Scholars Center (ISSC) and submit additional documentation to obtain work authorization. Furthermore, students must include the CPT course related to their concentration: MAE 584 (3 credit hours), CSE 584 (3 credit hour), EGR 584 (3 credit hours), EE 584 (3 credit hours) as an integral part of their program of study, reflected by their approved iPOS. The Internship course cannot be added to an approved iPOS once all coursework has been completed. Additional internship that is not part of the 30 credit hours can be removed from the iPOS. Note: Only internship courses can be removed from the iPOS. Courses that are approved as part of the overall degree program in the iPOS can only be substituted with another approved coursework.

The following requirements and limitations apply to all RAS concentrations regarding the CPT:

1. The student must have at least a 3.0 GPA and be in good academic standing at the time of the application. A student is not eligible if they are on academic probation.
2. The internship credit must apply to the student’s degree requirements and cannot be in excess of credit hours required for your program.

3. Registration for internship credit (e.g. MAE 584) is only allowed during a summer session. CPT requests are not offered for the fall and spring semesters and we do not have a winter session.

4. Internship employment dates cannot start before the first day of summer session C for the summer term you will enroll in the internship credit (e.g. MAE 584) and must end no later than the last day of summer session B.

5. If a student is an RA, TA or GSA, he/she cannot complete an internship for academic credit while he/she is employed by the department. This means, the student cannot be funded in the summer, if he/she wishes to do the internship.

6. If the student is doing an MS with either a thesis or a final/supervised project, the faculty advisor must approve of the internship and will be required to sign the 584 internship application.

7. If the student has completed all of his/her degree requirements, he/she is not eligible for CPT. The student should apply for OPT instead of CPT and should be directed to his/her assigned academic advisor for more information.

8. The student’s internship supervisor is required to submit an evaluation at the end of the student’s internship to the RAS graduate program chair. This evaluation will be due within one week of the student’s last day of work. If the graduate program chair does not receive a satisfactory evaluation, the student could receive a failing grade (E) for the internship course.

9. The student will be required to submit a paper explaining what he/she has learned in the internship. These details are outlined on the 584 Internship Application. This will also be due within one week of the student’s last day of work.

10. The company where the student wishes to be an intern must have a Student Placement Agreement (SPA) on file with the Engineering Career Center. Please refer to the Engineering Career Center website for more information on this process. Registration for internship credit (e.g. MAE 584) will not be allowed if the student cannot secure a signed SPA 30 days prior to the start of the summer session C term.

11. All students (domestic and international) may take part in an out-of-state internship in the summer session. The eligibility requirements for CPT internships remain the same as mentioned.

Application process and checklist:

Process for approval can take 3-4 weeks and must be completed and approved through ISSC at least 30 days prior to the start of the summer session C

<table>
<thead>
<tr>
<th>Eligibility Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSC</td>
</tr>
<tr>
<td>Maintenance of F-1 status (full-time, on-campus) for a minimum of one academic year in current degree program.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>You must have an approved iPOS on file with the appropriate 584 course listed in the correct summer term.</td>
</tr>
<tr>
<td>You must receive academic credit for your internship (3 credits of 584)</td>
</tr>
</tbody>
</table>

If you meet the ISSC and RAS eligibility requirements listed above and understand and agree to the RAS CPT policies, please follow the instructions below:

1. Contact your academic advisor in the SEMTE/CIDSE/ECEE/POLY academic advising office with the following information:
 - **Employer Name:***
 - **Dates of employment***
 Your academic advisor will check to see if there is Student Placement Agreement (SPA) on file for this company. If there is NOT a SPA on file, you will need to refer to the Engineering Career Center website for more information on how to secure one from your company.
2. Complete the following:
 - 584 Internship Application
 - Employer Letter (https://issc.asu.edu/employment/students-fj/f-1-cpt)
 - ISSC Academic Advisor Letter (https://drive.google.com/file/d/1M5xP-rNzzHF-waxY_1qpXcY_h3GU1zjV/view) Update iPOS to include the 584 course for 3 credits (you do not need to be registered in the course to do this)
 i. You are not able to remove already completed degree requirements to replace them with the internship credit (MAE 584, CSE 584, EGR 584, EE 584).
3. Turn in completed forms to your academic advisor:

 All forms are due 30 days prior to the start of summer session C classes. We will not accept any late forms.

4. Once your forms have been approved by the Graduate Program Chair and we have confirmed the company SPA forms have been signed and approved, you will be given your forms back with all of the required signatures and permission to register for MAE 584, CSE 584, EGR 584, EE 584 (3 credits) for summer session C.
5. Register for the appropriate course (MAE 584, CSE 584, EGR 584, EE 584) then take your completed CPT packet to ISSC. This process can take 7-10 business days. Your packet needs to include the following:

- 584 Internship Application
- Employer Letter
- ISSC Academic Advisor Letter
- Copy of your approved iPOS with the 584 course listed in the correct summer term
- Photocopy of your passport, and
- Photocopy of your I-94 (front and back)

Renege: (verb) to fail to carry out a promise or commitment

It is unethical for students to continue to seek or consider other employment opportunities once an offer has been accepted. RAS expect students to honor an acceptance and withdraw from all employment seeking activities. Students who accept an offer from an organization and later renege/decline the offer will be prohibited from further requesting future CPT pending a meeting with the Assistant Director.

After you have given your decision and accepted an offer, stop looking. Inform other employers who have extended offers that you have accepted another position. Do not accept further interview invitations or search further. Please refer to NACE’s Playing Fair Your Rights and Responsibilities as a Job Seeker http://www.naceweb.org/playing_fair/ to become familiar with Principles for Professional Practice.

Optional Practical Training (OPT)

Please visit the [International Students and Scholars Center](http://www.naceweb.org/playing_fair/) website for details regarding OPT and Pre-OPT. Students must be in good academic standing and have an approved iPOS. A student does (Pre-) OPT at their own risk since if the student doesn’t graduate in the semester indicated on the iPOS, no letter will be issued by advising to support a later graduation date unless the delay is for reasons beyond the control of the student.

6. **Financial Assistance Policies and Procedures**

Financial Assistance and/or Fellowships

Students interested in funding should contact faculty members to inquire about their funded projects for potential hourly or assistantship positions. We also encourage our students to explore assistantships available outside of the program and the Fulton Schools of Engineering, as well as explore the Graduate College website.

Requirements for Research Assistants (RA) and Teaching Assistants (TA)

Students awarded an assistantship within the Ira A. Fulton Schools of Engineering are required to be registered for 12 credit hours (no more, no less). Audit credit hours do not count towards the 12 credit hours. Students who obtain an assistantship outside the Ira A. Fulton Schools of Engineering are required to follow the policy of the unit that hires them.

TAs and RAs are treated as residents for tuition purposes. To be eligible for tuition remission, TAs and RAs must be employed a minimum of 10 hours per week (25 percent Full Time
Equivalency (FTE)). TAs/RAs working 10-19 hours per week (25-49 percent FTE) receive a 50 percent remission of tuition for the semester or summer session of their employment. TAs/RAs working 20 hours per week (50 percent FTE) do not pay tuition during the semester or summer session of their employment. In addition, the university pays the individual’s health insurance premium for those TAs and RAs working 20 hours per week (50 percent FTE). The student is responsible for fees other than tuition.

7. Conduct and Conflict Resolution

Being part of a large university creates opportunities to learn from a diverse instructor population with different teaching styles and modalities for delivering course content. Courses are offered by a diverse set of faculty including those who are research intensive, those whose primary responsibility is teaching, and part-time faculty who are working in the field. Based on enrollment or modality of offering, faculty may also be supported by graduate student teaching assistants and graders. This diverse higher education delivery platform may differ significantly from prior experience, and while it provides opportunity to expand the student’s ability to learn and develop problem-solving skills, concerns and conflicts with requirements and instructors may occasionally arise.

Students with instructional concerns should review and adhere to the following guidelines for attempting to resolve their issues. First and foremost, keep in mind that the faculty and advising staff are experienced, dedicated educators that are here to help you achieve your educational goals, but at the same time they have a responsibility to ensure standards are maintained and student outcomes are achieved prior to graduation. The university culture recognizes the value of diversity in multiple dimensions as well as the presumption of expertise and academic freedom of the faculty.

- Contact the TA (if available) or instructor to explain your concern and seek resolution
- If the TA/instructor has attempted to assist you but you are still having academic difficulty that is causing personal stress or hindering your academic success, see your academic advisor
- If the TA/instructor is not responsive or does not provide a legitimate response or accommodation, then contact your Graduate Program Chair
- If you still feel there is a legal, ethical or procedural violation that is victimizing you, contact the Office of the Vice Dean of Engineering for Academic Affairs
- Circumventing this process will be considered a violation of professional ethics and protocol

In Summary, Guidelines for Avoiding Problems

- Be sure you have the necessary prerequisite knowledge before starting a course
- Attend class and on-line exercises regularly
- Devote time each week to studying to avoid getting behind
- Contact the TA (if assigned) or instructor during office hours at first sign of trouble and come prepared to ask precise questions and to explain your difficulty
- Accept the fact that you grow intellectually and professionally by being challenged and learning to deal with diverse expectations and environments
8. Program and University Resources

Students are expected to become familiar with the university and the program policies and procedures and abide by the terms set forth. Information is available both online and by hardcopy upon request. Most importantly, you should visit the following websites:

- [Graduate College](#) (policies and procedures section)
- [Schedule of Classes](#)
- [International Student and Scholars Center](#) (if applicable)
- [Robotics & Autonomous Systems program](#)
- [Ira A. Fulton Schools of Engineering](#)

Student organizations are excellent opportunities to learn about career possibilities as many of the student groups operate in conjunction with industry professional societies … get involved today! Please visit the [Fulton Student Organizations website](#) for a list of student organizations.

9. Archived Editions of This Handbook

There are no archived versions of this handbook, as it is the first handbook developed for this program.